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Abstract

Steady incident flow past a circular cylinder for sub- to supercritical Reynolds number has been simulated as an

unsteady Reynolds-averaged Navier–Stokes (RANS) equation problem using nonlinear eddy-viscosity modelling

assuming two-dimensional flow. The model of Craft et al. (Int. J. Heat Fluid Flow 17 (1996) 108), with adjustment of

the coefficients of the ‘cubic’ terms, predicts the drag crisis at a Reynolds number of about 2� 105 due to the onset of

turbulence upstream of separation and associated changes in Strouhal number and separation positions. Slightly above

this value, at critical Reynolds numbers, drag is overestimated because attached separation bubbles are not simulated.

These do not occur at supercritical Reynolds numbers and drag coefficient, Strouhal number and separation positions

are in approximate agreement with experimental measurements (which show considerable scatter). Fluctuating lift

predictions are similar to sectional values measured experimentally for subcritical Reynolds numbers but corresponding

measurements have not been made at supercritical Reynolds numbers. For oscillatory ambient flow, in-line forces, as

defined by drag and inertia coefficients, have been compared with the experimental values of Sarpkaya (J. Fluid Mech.

165 (1986) 61) for values of the frequency parameter, b ¼ D2=nT ; equal to 1035 and 11240 and Keulegan–Carpenter

numbers, KC ¼ U0T=D; between 0.2 and 15 (D is cylinder diameter, n is kinematic viscosity, T is oscillation period, and

U0 is the amplitude of oscillating velocity). Variations with KC are qualitatively reproduced and magnitudes show best

agreement when there is separation with a large-scale wake, for which the turbulence model is intended. Lift

coefficients, frequency and transverse vortex shedding patterns for b ¼ 1035 are consistent with available experimental

information for bE250 � 500: For b ¼ 11240; it is predicted that separation is delayed due to more prominent

turbulence effects, reducing drag and lift coefficients and causing the wake to be more in line with the flow direction

than transverse to it. While these oscillatory flows are highly complex, attached separation bubbles are unlikely and the

flows probably two dimensional.

r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The flow past a circular cylinder has received considerable attention over the years but numerical modelling from sub-

to supercritical Reynolds numbers has yet to be undertaken successfully. While unsteady 2-D laminar computations are

now routine, 3-D computations, or direct numerical simulation (DNS), require massive computer resources which
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increase markedly as Reynolds number increases and, to date, results for values up to about 500 have been achieved,

e.g., Karniadakis and Triantafyllou (1992). However, Reynolds-averaged Navier–Stokes (RANS) turbulence closures

may be used to compute flows at very high Reynolds numbers.

Turbulence models are essentially a pragmatic representation of small-scale, high-frequency fluctuations embedded

within a mean or (as in this case) slowly varying ‘large-scale’ flow. Three levels of modelling are commonly adopted: the

Boussinesq eddy-viscosity assumption based on the laminar stress–strain relation with ‘viscosity’ adjusted to account

for turbulent mixing; simulation of the RANS equations with the six components of Reynolds stress and a dissipation

rate (or other length-scale determining variable) defined by their transport equations; and so-called large-eddy

simulation (LES) where ‘slowly varying’ components are assumed to extend down to the mesh size where subgrid

models, based on the eddy-viscosity concept, are applied. While there are obvious limitations and different weaknesses

in all approaches, there have been notable successes, e.g., the mixing length concept for eddy viscosity (Prandtl, 1927)

has been remarkably successful for simple boundary-layer flows and the k � e model for eddy viscosity defines the

‘mean’ flow properties accurately for attached unsteady boundary layers, e.g., Letherman et al. (2000), where k is

turbulence kinetic energy and e is its dissipation rate. However, when separation occurs the capabilities of different

turbulence models are less certain. LES is a 3-D, and hence a very computationally demanding, approach which is

probably realistic away from a solid boundary, but close to a boundary has all the limitations of a simple eddy-viscosity

formulation. Reynolds stress transport modelling is theoretically appealing and progress has been made with near-wall

formulations, e.g., Craft et al. (2001). However, numerical stability is often problematic and, with seven transport

equations and often a small time step for stability, it can also be very computationally demanding. To avoid these latter

problems, nonlinear eddy-viscosity modelling has been proposed, as reviewed, for example, in Apsley et al. (1997).

Reynolds stresses are defined by algebraic formulae which depend on nonlinear combinations of mean strain and

vorticity as well as k and e: In this way some of the weaknesses of previous linear eddy-viscosity models are avoided and

important, well-defined, effects are represented, at least qualitatively, with coefficients which may be tuned for

particular applications. Nonlinear models are thus made to mimic the physics of turbulence, by means of mathematical

artefacts and calibration. The underlying philosophy remains that of the mixing-length approach. In relation to the

flows of interest here, particular weaknesses of the linear eddy-viscosity models relate to: turbulence production near

stagnation, insensitivity to curvature, separation on curved surfaces and often poor prediction of transition.

Lu et al. (1997) have applied LES to steady incident flow past a circular cylinder with a Reynolds number of 104,

giving good force and Strouhal number predictions. The Smagorinsky subgrid model was used, unusually without

special treatment close to a wall. Oscillatory flow was also investigated for b ¼ 1035 and KCp10 and in-line force was

in approximate agreement with the experiments of Sarpkaya (1986). Breuer (1998) applied LES to steady flow past a

circular cylinder at a Reynolds number of 3900 and found detailed results to be dependent on numerical details, notably

the choice of advection scheme with central differencing being recommended. LES for square cylinders has received

much more attention, but again results appear sensitive to numerical details, e.g., Rodi et al. (1996), Murakami and

Iizuka (1999), although the square cylinder has the physical advantage that upstream separation is fixed by sharp

corners. RANS solvers have also been widely applied to square cylinders with full Reynolds-stress transport equations

giving better results than linear or nonlinear eddy-viscosity modelling (Rodi et al., 1996). Application of RANS solvers

to the circular cylinder has been less common, but results from Celik and Shaffer (1995) using linear k � e models show

poor agreement with experiment.

In this paper, nonlinear eddy-viscosity models are applied to the circular cylinder case for the first time to our

knowledge, although corresponding applications have been made for other flows, e.g., unsteady compressible flows

around lifting aerofoils (Barakos and Drikakis, 2000). Assuming two-dimensional large-scale flow, three turbulence

models are applied: those of Speziale (1987), Craft et al. (1996) and Lien et al. (1996). The model of Craft et al. seems

most appropriate and some (limited) adjustments are made to coefficients to fit the experimental data. The models are

applied through a range of Reynolds numbers, from 103 to107, where flows vary from: subcritical Reynolds numbers

with laminar separation and transition to turbulence in the separated shear layers; to critical Reynolds numbers with

laminar separation and turbulent transition sufficiently close to form re-attachment bubbles before turbulent

separation; to supercritical Reynolds numbers with turbulent separation and a vortex-shedding wake (as for subcritical

but with a higher Strouhal number).

These wakes have a spanwise cellular structure where a cell contains vorticity predominantly parallel to or slightly

inclined to the cylinder axis. Streamwise vorticity connects to the cell boundaries in a complex manner, investigated in

great detail for Reynolds numbers less than 1000, e.g., Williamson (1996). Vortex inclination had previously been

estimated through hot-wire measurements for a Reynolds numbers of 3600 by Stansby (1974), investigating the effect of

end plates, see also Szepessy (1993). The cells may be stationary or fluctuating with a spanwise extent which is typically

several diameters but dependent on end conditions and Reynolds number. Vortex shedding is thus not in phase along

the span and the fluctuating lift is highly dependent on the spanwise length over which force is measured. The mean

ARTICLE IN PRESS
M. Saghafian et al. / Journal of Fluids and Structures 17 (2003) 1213–12361214



drag coefficient and the Strouhal number, however, show little dependence. Local or sectional lift forces have recently

been obtained by Norberg (2001) for subcritical Reynolds numbers and are most suited for comparison with a 2-D

model, although vortex inclination will of course reduce force magnitude to some degree.

It is worth mentioning that one of the most important effects of unsteady wake flows relates to flexible cylinders

causing ‘vortex-induced vibrations’ (or VIV) which correlates the larger scale flow structures along the span, making the

flow nearly 2-D. Thus, while the flow around a stationary cylinder is an inevitable first step, allowing dynamic response

probably makes 2-D simulations of more direct value.

The model of Craft et al. (1996) is also applied to oscillatory flows and forces are compared with the experimental

results of Sarpkaya (1986) for b ¼ 1035 and 11240. These separated and vortex-shedding flows are clearly complex and

turbulent but are thought to be predominantly 2-D without attached separation bubbles and so are well suited for this

form of modelling.

2. Mathematical formulation

The RANS equations can be written for incompressible flow in tensor notation as follows:
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¼ 0; ð1Þ
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Upper case denotes ensemble-mean quantities and lower case fluctuating or turbulence quantities; P is pressure and r
is density. An overbar is used to denote Reynolds averaging. The momentum equations are not a closed set and

turbulence models are used to model the turbulent or Reynolds stresses ð�uiujÞ: Linear and nonlinear k � e models are

now defined.

2.1. Linear model

The linear stress–strain relation is defined as follows:

uiuj ¼ �2ntSij þ 2
3

kdij ; ð3Þ

where dij is the Kronecker delta, Sij is the mean stress tensor (defined in Eq. (11) below) and eddy viscosity nt is defined

by

nt ¼ Cmfm
k2

*e
ð4Þ

with coefficients Cm and fm given in Table 1 (for the various models used). k is the turbulent kinetic energy and *e is the

homogeneous part of the dissipation rate e: Transport equations for k and *e are
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where E is defined in Table 1 and the turbulent kinetic energy production rate is

Pk ¼ �uiuj
@Ui

@xj

¼ 2ntSijSij : ð7Þ

Application of the Boussinesq assumption, Eq. (3), gives

Pk ¼ nt
@Ui

@xj

þ
@Uj

@xi

� �
@Ui

@xj

: ð8Þ

The homogeneous and inhomogeneous parts of the dissipation rate are summed together

e ¼ *eþ D: ð9Þ

In high-Reynolds number k � e models fm ¼ 1; D ¼ E ¼ 0; e ¼ *e:
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2.2. Nonlinear models

In quadratic and cubic eddy-viscosity models, the stress–strain relationship can be written in the following form

(Craft et al., 1996):

uiuj ¼
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Mean strain and vorticity tensors are defined by
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Table 1 displays coefficients and terms for the linear Launder and Sharma (1974) and the three nonlinear models of

Speziale (1987), Craft et al. (1996) and Lien et al. (1996). The first nonlinear model is quadratic and the other two are cubic.

The nonlinear components of Reynolds stresses, Eq. (10), are included in the RANS momentum equations as source terms.
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Table 1

Coefficients for the turbulence models

Launder–Sharma LS Speziale Craft–Launder–Suga (CLS) Lien–Chen–Leschziner (LCL)

Ce1 1.44 1.44 1.44 1.44

Ce2 1.92 1.92 1.92 1.92

sk 1.0 1.0 1.0 1.0

se 1.3 1.3 1.3 1.3

Cm 0.09 0.09 0:3

1 þ 0:35Z3=2
ð1 � exp ð�0:36e0:75ZÞÞ

2=3

1:25 þ %S þ 0:9 %O
C1 0 0.054 �0:4Cmfm 3fm=ð1000 þ %S3Þ
C2 0 0.054 0:4Cmfm 15fm=ð1000 þ %S3Þ
C3 0 0 1:04Cmfm 19fm=ð1000 þ %S3Þ
C4 0 0 80C3

mfm 80C3
mfm

C5 0 0 0 0

C6 0 0 �40C3
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C7 0 0 40C3
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Rt ¼ k2=n*e; yn ¼ ynk1=2=n yn is distance from the wall.
%S ¼ ðk=eÞ
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; g ¼ k3=2=cl *eyn; cl ¼ 2:5; e1 ¼ ðk3=2=kynÞðC3=4
m þ 2k=ynÞ:
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3. Numerical solution

The finite-volume approach is applied to discretise the partial differential equations using a body-fitted O-type

collocated grid, as shown in Fig. 1. The SIMPLEC pressure-correction algorithm is employed to solve the numerical

problem with the Rhie–Chow interpolation scheme for cell-face velocities to prevent nonphysical oscillations in

pressure. The popular third-order accurate upwind QUICK scheme is applied to the advective terms in the momentum

equations and the lower-order HYBRID scheme in the k and e transport equations to avoid numerical instability.

These, now standard, methods are described, for example, in Ferziger and Peric (1996). At the inflow boundary a

uniform velocity U is input, the turbulence kinetic energy is set to a low value, k=U2 ¼ 10�3 or 10�4, with nt=nE1:0: At

an outflow boundary the convective boundary condition may be applied for each variable:

@ji

@t
þ UN

@ji

@x
¼

@j
N

@t
: ð12Þ

This is generally applied and is particularly useful in steady onset flow as it minimises the upstream effect of the wake

crossing the downstream boundary, e.g., see Sani and Gresho (1994). Grid-independent results were obtained with

140� 120 grid points in the r and y directions, respectively. The dimension of the domain in the flow direction is 30D

and in the transverse direction is 21D: Grid independence (or numerical convergence) is determined here from the force

values, which are the main focus of this paper. While the drag coefficient and the Strouhal number (both defined below)

are relatively insensitive parameters, the fluctuating lift coefficient is quite sensitive to numerical details; e.g., see

Stansby and Slaouti (1993). Results with a 102� 102 mesh were generally very close and further limited tests with a

162� 162 mesh gave almost identical results to the 140� 120 mesh. It may be noted that the 162� 162 mesh has been

used with LES which requires definition of smaller scales than the present approach. The radial cell size at the surface

(d) is a maximum, dmax; in the flow direction (y ¼ 0	, 180	) and a minimum, dmin; in the transverse direction (y ¼ 90	,

270	) where dmin ¼ 0:46dmax: This reduces the variation of yþ ¼ duþ=n; where uþ is the friction velocity, around the

cylinder in the surface cell which is desirable for turbulence modelling. In these applications dmax=D is varied from 0.001

(for low Reynolds numbers) to 0.0001 (for high Reynolds numbers). This gives a maximum yþ of about unity. Different

values for nondimensional time step, dtU0=D; (0.005, 0.01, 0.02 and 0.03) were tested and 0.02 was usually selected (dt is

time step and U0 is the maximum incident velocity).

4. Results

4.1. Steady ambient flow

Four turbulence models were initially applied to steady ambient flow around a cylinder: the linear Launder–Sharma

(LS) model (probably the industry-standard, low-Reynolds-number model); the nonlinear Speziale model, with

quadratic terms; the nonlinear Craft, Launder, Suga (CLS) model, with cubic terms; and the Lien, Chen and Leschziner

(LCL) model, also with cubic terms. Coarse predictive quality was assessed through comparison of the drag coefficient,
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Fig. 1. Computational grid.

M. Saghafian et al. / Journal of Fluids and Structures 17 (2003) 1213–1236 1217



CD ¼ ðDrag forceÞ=ð1
2
rU2DÞ; and the Strouhal number, S ¼ fLD=U ; where fL is the lift frequency, with the experiments

of Schewe (1983). The fundamental limitations of the LS model are well known, notably the overprediction of

turbulence near stagnation, generating turbulent boundary layers upstream of separation at Reynolds numbers well

below the critical values. The CLS model was most effective, importantly predicting transition to turbulent separation

at a Reynolds number, Reð¼ UD=nÞE3 � 105: The cubic terms with coefficients c6 and c7 are necessary to account for

curvature effects and the low-Reynolds number elements in the CLS model are, in particular, set up to resolve flows

with complex strain and sensitivity to viscous effects, as occur in these problems. Tuning the cubic coefficients has

previously been suggested by Lien et al. (1996). Reducing these values by 60% (as suggested by Lien et al. with reference

to separation from a curved surface) produced the best overall agreement with experiment and the CLS model with this

modification is used henceforth. Note that this modification only affects curved flow; in simple shear the last two

nonlinear terms cancel out.

The dependence of CD; S and CL r:m:s: on Re is shown in Fig. 2; CD represents the mean drag coefficient and CL is the

lift force coefficient normalised in the same way as drag. At this stage it is also thought useful to catalogue the effect of

the different terms in the CLS model on CD and S and this is done in Table 2. Linear (case A) and linear/quadratic (case

B) terms are seen to give CD values which are far too high. The addition of standard cubic terms (case C) causes CD to

be too low, while reducing cubic terms by 60% (case D) gives much improved agreement.
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Fig. 2. Variation of mean drag coefficient, Strouhal number and r.m.s. lift coefficient with Reynolds number, comparing the nonlinear

(modified) CLS model and the linear LS model with experimental data.
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It is shown in Fig. 2 that the very small CD values at critical Reynolds numbers, measured by Schewe (1983),

are not predicted. The model does not simulate attached separation bubbles, resulting from laminar separation

with transition just downstream, causing turbulent re-attachment which is then followed by turbulent separation

forming shear layers which interact to form the wake. In the computations the boundary layers at separation

simply become turbulent without reattachment at ReE2 � 105: This coincides with a jump in Strouhal number

from about 0.22 to 0.3. In Schewe’s experiments S becomes high in the critical range before reverting to about 0.3

in the supercritical range. The predicted CD variation is in fact in quite close agreement with the results of

Achenbach (1968), although less so with the earlier results of Roshko (1961) which show similar trends to Schewe.

It seems possible that Achenbach’s results were affected by small surface imperfections or incident turbulence

disturbing the sensitive re-attachment process. Values from the linear LS model are shown in this figure as a reference

for interest. The differences in the results of Schewe, Achenbach and Roshko are clearly seen in the Reynolds number

range 2� 105–5� 106.

While there is approximate agreement in Strouhal numbers between experiment and the modified CLS model at

subcritical and supercritical Reynolds numbers, comparison of fluctuating lift is less straightforward, as discussed

above. The values of CL r:m:s: from the model are however approximately equal to or slightly greater than the

measurements of sectional force for subcritical Reynolds numbers (Norberg, 2001) (except at Reynolds number of

6000), but change little as Reynolds number increases to critical and supercritical values. Unfortunately, Norberg’s

values only extend to ReE2 � 105: CL r:m:s: values from Schewe measured on a span of ten diameters are less than

Norberg’s sectional values at subcritical Reynolds numbers, as would be expected, and become very small in the critical

and supercritical ranges. A better appraisal of predicted CL r:m:s: values at supercritical Reynolds numbers would require

experiments of the kind undertaken by Norberg (2001) for subcritical Reynolds numbers. It is worth mentioning,

however, that there is visual evidence of ‘strong’ vortex shedding at ReE2 � 106 from a vibrating pile in an estuary,

where vortex shedding is expected to be well correlated, shown in a photograph of the water surface (CIRIA Report

UR8, 1977).

Examples of lift and drag variation with time are shown in Fig. 3 for four Reynolds numbers from subcritical to

supercritical. The near-sinusoidal lift variation is seen, with a much smaller drag fluctuation at twice the lift frequency

superimposed on the mean value. Fig. 4 shows mean surface pressure coefficient distributions around the cylinder from

the modified CLS model and the LS model for comparison, with available experimental measurements and some LES
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Table 2

Results from the CLS model

Case A Case B Case C Case D

Re=1.0� 104

CD 1.5 1.55 0.95 1.09

S 0.249 0.244 0.217 0.22

Re=1.0� 105

CD 1.65 1.832 0.93 1. 18

S 0.249 0.25 0.21 0.225

Re=1.4� 105

CD 1.55 1.82 0.92 1.17

S 0.248 0.25 0.21 0.227

Re=3.4� 105

CD 0.89 — 0.64 0.76

S 0.29 — 0.16 0.301

Re=3.6� 106

CD 0.45 0.64 0.41 0.67

S 0.27 0.29 0.1 0.31

Case A: Using linear terms of the models.

Case B: Using linear terms of the models.

Case C: Using all terms of the model.

Case D: Using all linear and quadratic and terms, but C6 ¼ �16C3
mfm and C7 ¼ 16C3

mfm:
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modelling. While there is scatter in the experimental values, there should perhaps be most concern about the results for

Re ¼ 8:4 � 106: Here we only have the experimental results of Roshko which show remarkably good agreement with

the LS model with its well-known limitation of overproduction of turbulence near stagnation. The modified CLS model

shows a much higher suction pressure (negative pressure) around yE790	 and a lower base suction, except close to

yE180	: The latter effect has been observed previously to be due to an artificially 2-D wake with rolling up of vortices

close to the cylinder causing high velocities (Smith and Stansby, 1989). Given the above limitation of the LS model, this

does suggest that Roshko’s experiments might also have experienced extraneous turbulence effects, either from a

slightly rough surface or free-stream turbulence. With such a small boundary-layer thickness, tiny surface roughness

could be significant.

It is of interest to compare the ratio of friction drag to total drag for comparison with the experiments of Achenbach.

Fig. 5 shows generally good agreement, except for supercritical Reynolds numbers where the experimental values are

much lower than those from the modified CLS model. This again suggests that roughness in the experiments might be

an issue. Fig. 6 shows the variation of mean separation positions (defined by zero shear stress) with Reynolds number.

The effect of turbulence at separation is clearly seen at ReE2 � 105; and the effect of the attached separation bubbles is

obviously missing in the model results. The differences at critical Reynolds numbers relate to the uncertainties

mentioned above.

Finally, it is instructive to show streamline and turbulence energy contours for the three Reynolds-number regimes,

relating to Figs. 3 and 4. Fig. 7a shows a subcritical case for Re ¼ 105 with the modified CLS model and Fig. 7b shows

results with the LS model where the erroneous turbulence upstream of separation is clearly visible. The delayed

separation with the modified CLS model is shown in Figs. 7c and d for Re=3.4� 106 and 8.4� 106. Vigorous vortex

shedding for the supercritical case is clearly seen in Fig. 7d. The attached turbulent boundary layer in the last two cases

is so thin that it is hardly visible. The magnitude of turbulence energy within an eddy is seen to decrease as it moves

downstream.
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4.2. Oscillatory ambient flow

Oscillatory, uniform ambient flows around cylinders have received much attention in recent years as an idealisation

of wave flows around cylinders. Early experimental work of Keulegan and Carpenter (1958) caused an important

defining parameter to be called the Keulegan–Carpenter number, KC ¼ U0T=D; for sinusoidal flows of velocity
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U ¼ U0 sinð2pt=TÞ: This is also equal to 2pa=D; where a is the amplitude of particle motion. Subsequently, advantage

has been taken of the resonant flow in U-tubes to provide uniform oscillatory ambient flows, notably Sarpkaya (1976,

1986) and Obasaju et al. (1988). The flow is further defined by the parameter b ¼ D2=nT ; rather than the Reynolds

number Re ¼ U0D=n ¼ KCb since it only depends on cylinder diameter for a given U-tube.

We are interested here in high b values (greater than 1000 say), relevant to offshore applications, where the flow is

predominantly turbulent. Sarpkaya (1986) made a detailed investigation of in-line force for b ¼ 1035 and 11240 and we

compute these cases using the modified CLS model with KC in the range 0.2–20. Force (per unit length) is

conventionally defined using the Morison equation, F ¼ 1
2 rU Uj jCDD þ rpD2CM

’U=4; where the drag and inertia

coefficients, CD and CM ; respectively, are obtained usually by Fourier analysis. This formula is well known not to

represent all aspects of the actual force, but it enables a concise comparison of results to be made since CD and CM are

only dependent on KC and b: The model is run for several cycles, at least 5 and up to 15, to allow transients to die away,

and CD and CM are obtained by analysis of the last three cycles. Comparisons with experimental values are shown in

Fig. 8. Cross-flow or lift forces, defined by a lift coefficient, CL ¼ ðLift forceÞ=ð1
2
rU2

0 DÞ; occur due to flow asymmetry

and vortex shedding for KC > 4; but at this stage we concentrate on CD and CM : Here CM is close to the potential-flow

value of 2, except when vortex shedding is prominent, for KC > 0:7; say. The CD variation is dependent only on viscous

effects. For b ¼ 1035; in Fig. 8a, for small KCo0.7, the experimental CD values are close to the laminar theory of Wang

(1968). For KCE0:7; a three-dimensional mushroom-like instability, known as the Honji instability (Honji, 1981),

occurs and is the first stage of transition to turbulence. This causes an increase in CD as shown in Fig. 8a. However, CD

continues to decrease with KC, up to KCE2; when separated vortical structures become more prominent, remaining

almost symmetric up to KCE4; and then becoming asymmetric with increasingly complex vortex shedding structures as

KC increases. The model predictions of CD and CM are in reasonable agreement with experiment, except for KC ¼ 12

and KC o 2. Clearly such a turbulence model is not intended to represent such effects as Honji instability and there is a

smooth transition with KC, with the CD value approaching the laminar value as KC decreases. At KC ¼ 0:5; the

smallest value investigated, CD is overestimated by 12% and this is due to the turbulence model instigating transition to

turbulence at lower KC than in experiments. It should be noted that the turbulence model with nonlinear terms is set up

for predominantly steady flows, and ambient flow frequency is proportional to the inverse of KC. Finally, the low CD

prediction for KC=12 is possibly due to inadequate representation of complex vortex shedding patterns (shown

below).

For b ¼ 11240 in Fig. 8b, experimental values are only available for KC > 0:8; and the variation of CD and CM is

predicted reasonably by the model. However, the computed values for KCo0.8 are of interest (and considerable

practical importance in relation to hydrodynamic damping). Honji instability would be expected at KCE0:6 but the

predicted CD values are much greater than Wang’s laminar values below this value, as would be associated with

turbulent flow. While there are no experimental measurements at b ¼ 11240; there are at b ¼ 20526 due to Bearman

and Russell (1996) and the model was run for this value with KC ¼ 0:2 and 0.4; CD values of 1.9 and 1.6 were obtained

respectively, comparing with experimental values of 2.0–1.2 and 0.8–1.0. It would thus appear that there is prediction
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Fig. 7. (a) Streamlines and contours of turbulent kinetic energy ðk=U2
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Þ for Re=105. (a) At two times in the vortex shedding cycle

using the nonlinear modified CLS model. (b) Using the using linear LS model. (ðk=U2
N
Þmin ¼ 5 � 10�3 and ðk=U2

N
Þmax ¼ 0:15;

distribution is not uniform). (c) Streamlines and contours of turbulent kinetic energy ðk=U2
N
Þ using the nonlinear modified CLS model

for a critical Reynolds number. (d) Streamlines and contours of turbulent kinetic energy ðk=U2
N
Þ using the nonlinear modified CLS

model for a supercritical Reynolds number.
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within experimental scatter at KC=0.2 when the viscous flow is predominantly that of an attached (curved) boundary

layer. However, the limitations in relation to transition prediction, found at b ¼ 1035; probably mean that CD will

again be overestimated for smaller KC values when the flow eventually becomes laminar. At KC ¼ 0:4; closer to where

Honji instability would be expected, CD is overpredicted, which is again consistent with b ¼ 1035:
Fluctuating lift was not reported in Sarpkaya (1986), but maximum values of CL are available in Sarpkaya (1976) for

b ¼ 1107 and computed values are shown in Fig. 9 for b ¼ 1035 and 11240. The high values for bE1000 are in broad

agreement, and computed values for b ¼ 11240 are somewhat lower, in keeping with the observed trend at lower b
values that CL decreases as b increases. Lift can be of similar magnitude, or even larger than, in-line force for KC>7,

when vortex shedding effects become prominent. Detailed experimental investigations of vortex shedding behaviour in

relation to lift generation have been undertaken, notably by Williamson (1985) with b ¼ 255 and 510 and by Obasaju

et al. (1988) for b ¼ 416 and 634 (mainly).

Examples of force variation with time are shown in Fig. 10 for KC=4, 8, 12 and 15 for b ¼ 1035: The force

variation reconstituted from the drag and inertia coefficients derived are also shown to give an indication

of the fit obtained by the Morison equation. The in-line force, using the experimentally derived coefficients,

is also shown. For KCp4 lift is very small, but increases as KC increases. For KC=8, 12 and 15 the fit of

the Morison equation is less close and the lift frequency is at twice the oscillation frequency for KC=8 and 12.

At KC=15, the lift frequency is predominantly three times the oscillation frequency. The effect of vortex shedding

on in-line force, not accounted for in Morison’s equation, is quite apparent for KC=8, 12 and 15. For KC=18 the
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predictions of CD and CM (1.1 and 1.3, respectively) were less satisfactory, and this coincides with the flow ceasing to be

two dimensional as discussed below.

Plots of streamlines, vorticity and turbulence energy contours are shown in Fig. 11 for the same KC values of 4, 8, 12

and 15 at b ¼ 1035; for different phases, y; within a cycle. For KC=4 there is slight asymmetry, and new vorticity

rolling up close to the cylinder is accompanied by weak vortex-pair formation as a residue from the previous half-cycle.

The vorticity and turbulence energy remain in a confined area around the cylinder. There is little evidence of vorticity

older than two half-cycles. For KC=8, asymmetry is quite marked, and vorticity crosses from one side of the cylinder

to the other. One dominant vortex is shed per half-cycle, with vortex pairing of shed vortices occurring on one side of

the cylinder only, forming a transverse wake. A similar process occurs at KC=12 except that the shed vortices are

bigger and the transverse wake wider. KC=15 is the start of the regime where two dominant vortices are shed per half-

cycle with the formation of a vortex pair in each half-cycle on different sides of the cylinder, forming a diagonal wake

(more clearly seen at KC=18). These structures may be related to the lift variations in Fig. 10, reproducing the simple

experimental observation that one dominant vortex shed per half-cycle causes a lift frequency of twice the oscillation

frequency (Williamson, 1985). At KC=15, a second vortex in a half-cycle has become more prominent, causing a lift

frequency of three times the oscillation frequency. These results are consistent with experiments for a smaller values of

b; between about 250 and 500 (Williamson, 1985; Obasaju et al., 1988).

Force variations for b ¼ 11240 are similar but the lift maxima are smaller and the Morison fit is markedly closer.

Examples are shown for KC=4, 6, 10, 15 and 20 in Fig. 12. The lift variations, for a given KC, have somewhat higher

dominant frequencies than those at b ¼ 1035: Corresponding plots of streamlines, vorticity and turbulence energy

contours are shown in Fig. 13. At KC=4, there is slight asymmetry and a small lift force at the oscillation frequency,

rather than at twice with b ¼ 1035: At KC=6, one vortex is shed per half-cycle and the lift frequency is twice the

oscillation frequency (as for b ¼ 1035). For KC=10, however, two prominent vortices are shed in a half-cycle and the

vortex pair convection is much more in line with the flow direction than transverse to it, as was the case for b ¼ 1035:
The lift frequency is predominantly at three times the oscillation frequency, although one cycle is rather weaker than the

other two. At KC=15, lift frequency is also predominantly at three times the oscillation frequency and two vortices are

shed in a half-cycle, forming a diagonal wake. At KC=20, three prominent vortices are shed in a half-cycle, causing a

lift frequency of four times the oscillation frequency. In all cases vortex pair convection is more in line with the flow

direction than for b ¼ 1035:
At first sight it is perhaps surprising that force prediction for these complex oscillatory flows can be better than for

steady ambient flows. However, the careful experimental examination of Obasaju et al. (1988) has shown that the

spanwise correlation of lift force is very close to unity for KCo18, albeit for b ¼ 483 (although at KC values around 12

lift can be well correlated over different parts of the span but out of phase). For higher KC the correlation deteriorates

markedly. We can of course only conjecture that this high correlation extends to b ¼ 1035 and 11240, but the good in-

line force predictions do suggest this. That the predicted wake formations are less transverse for b ¼ 11240 than for

b ¼ 1035 is associated with turbulent separation occurring further downstream, as is the case for supercritical Reynolds

numbers in steady incident flow.
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5. Discussion

The basic premise of an unsteady RANS flow solver is that large-scale fluctuations, whether due to vortex shedding

or imposed oscillation, are of sufficiently large scale to be distinct from small-scale turbulence which is modelled. A

further assumption made here is that large-scale flow structures are 2-D. The flows investigated only approximate this

to a variable degree, and we rely on experimental evidence to define spanwise correlation. This will remain the case until

3-D computations are a practical possibility at these high Reynolds numbers. The nonlinear eddy-viscosity model of
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Craft et al. (CLS) with reduced coefficients for cubic terms was the most successful of those applied. It has also been

found to be a suitable choice for unsteady compressible flows around lifting aerofoils (Barakos and Drikakis, 2000),

although no modification of the original coefficients was attempted in that case.

Some results using the linear LS (industry-standard) k � e model have been presented and reinforce well-known

limitations. Quadratic terms are necessary to resolve normal stress anisotropy and cubic terms account for effects due to
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curvature and strain. In the CLS model, the low-Reynolds-number elements in the cubic terms are set up to resolve

flows with complex strain with sensitivity to viscous effects. The coefficients of these terms are reduced for these flows

following the suggestion for the model of LCL. The model is suited to flows with transition, curvature and separation,

which occur here. It is known that the CLS model predicts transitional flat plate flows subjected to adverse pressure
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Fig. 11. (a) Plots of streamlines, vorticity contours and k contours at different phases y for KC=4 and b ¼ 1035: (b) Plots of

streamlines, vorticity contours and k contours at different phases y for KC=8 and b ¼ 1035: (c) Plots of streamlines, vorticity contours

and k contours at different phases y for KC=12 and b ¼ 1035: (d) Plots of streamlines, vorticity contours and k contours at different

phases y for KC=15 and b ¼ 1035:
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gradients, and cubic terms account for the influence of a curved surface. Of course, the ability to predict such transition

does not extend to the effect of coherent transitional structures like the Honji instability in oscillatory flow. It should

also be noted that purely flat-plate transition (without separation) would occur at KCC17 for b ¼ 1035 and KCC5 for

b ¼ 11240: Analysis of resulting forces and discussion are given in Cobbin et al. (1995). Interestingly, it would appear

that Honji instability is a relatively low b-number phenomenon, as transition actually occurs at a lower KC value than

that for Honji instability at b ¼ 11240: This KC value is well below 5, indicating the strong influence of curvature on
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transition. That there is some effect of turbulence in the model at KC=0.5 for b ¼ 1035 (when laminar flow is expected)

indicates that the CLS model overestimates the influence of curvature on transition. In steady incident flow, a clear

further weakness of the model lies in its inability to simulate attached separation bubbles with turbulent re-attachment

and then turbulent separation at critical Reynolds numbers.

The predictions of in-line force (defined by CD and CM ) for KCo2, approximately, are less satisfactory than for 3-D

LES computations (Lu et al., 1997), probably because of the enforced two dimensionality (although problems

associated with transition and curvature apply to both approaches). Also the CLS model is set up for steady incident

flow with large-scale separation and at these KC values there are complex thin (small-scale) wakes and re-attachment

(as well as transition on a curved surface). The basic premise for unsteady RANS modelling must be doubtful. The

turbulence model is better suited for force predictions at higher KC values, where there is more prominent separation

with larger scale vortex shedding. Predictions are generally reasonable (for KCo18 where vortex shedding is thought to

be 2-D) and at a much higher b ¼ 11240 than has been attained previously.
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Some new insights in oscillatory flow are gained. That CD and CL max are much smaller for b ¼ 11240 than for

b ¼ 1035; when vortex shedding occurs, is because separation is delayed due to turbulence, forming a narrower wake

with reduced transverse structures. It thus seems that this is not due to more strongly 3-D vortex shedding at a higher b
value, as might be intuitively expected (as the simulation is 2-D). CL max can be greater than the in-line force for

b ¼ 11240 as it was for b ¼ 1035:
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For steady ambient flow, CL r:m:s: is generally in approximate agreement with or slightly greater than sectional

(local) force measurements at subcritical Reynolds numbers, although not with those measured over several

diameters, due to poor spanwise correlation. Corresponding sectional lift forces have not been measured at

supercritical (or critical) Reynolds numbers, but the computational modelling indicates that these would be

of similar magnitude to those at subcritical Reynolds numbers. Experimental data for supercritical Reynolds

numbers is generally quite sparse. Comparison with the modelling raises questions concerning the precise experimental

conditions, in relation to free-stream turbulence and/or surface roughness, where tiny effects could be significant. This is

suggested because comparisons with linear (LS) modelling are quite close and it is well known that such models

overgenerate turbulence near stagnation quite substantially; roughness and/or free-stream turbulence would have a

similar effect.

Finally, it is pertinent to ask whether LES would give better predictions with large-scale vortex shedding. It is of

course 3-D, and so cellular spanwise structures should be simulated (and indeed have been at subcritical Reynolds

numbers). However, the near-wall turbulence modelling is generally based on a mixing-length type formulation with

damping functions. This cannot represent transition. Thus it seems that a nonlinear cubic eddy-viscosity model of the

CLS type offers the best option for certain categories of flow (given that DNS will remain impractical at these Reynolds

numbers without a change in computer technology). Such modelling for near-wall flows could be combined with LES

for the outer flow where subgrid modelling becomes appropriate.

Most of the runs undertaken here required about 20 h on a 1.3GHz PC. Codes were written in Visual Fortran.

6. Conclusions

A 2-D RANS equation solver with the nonlinear eddy viscosity model of Craft et al. (1996) has been used to predict

forces in steady and oscillatory flows past a circular cylinder for a wide range of Reynolds numbers, involving laminar

and turbulent separation. Prediction of experimental results for steady incident flow with large-scale vortex shedding is

optimised with the coefficients of cubic terms reduced by 60%, suggested previously by Lien et al. (1996). The

critical Reynolds number of 2� 105 is predicted and forces are in reasonable agreement with experiment up to this

value. The inability to predict attached separation bubbles is however a marked weakness. At supercritical

Reynolds numbers, there is some agreement but considerable scatter in experimental data. Forces in complex oscillatory
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Fig. 13. (a) Plots of streamlines, vorticity and k=U2
0 contours at different phases for KC=4 and b ¼ 11240: (b) Plots of streamlines,

vorticity and k=U2
0 contours at different phases for KC=6 and b ¼ 11240: (c) Plots of streamlines, vorticity and k=U2

0 contours at

different phases for KC=10 and b ¼ 11240: (d) Plots of streamlines, vorticity and k=U2
0 contours at different phases for KC=15 and

b ¼ 11240: (e) Plots of streamlines, vorticity and k=U2
0 contours at different phases for KC=20 and b ¼ 11240:
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flows at high b values are predicted reasonably for KC>2, approximately, where vortex shedding is prominent,

and KCo18, where real flows are thought to be almost two dimensional. For KCo2, where wakes are thin

and of a small scale, prediction is less satisfactory than for LES (Lu et al., 1997). Differences in wake formation

between b ¼ 1035 and 11240 are demonstrated, due to the more prominent effects of turbulence for the latter. For

b ¼ 1035 vortex pairing forms transverse wakes while for b ¼ 11240 vortex pair convection is more in line with

the flow direction.
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